VİNÇ NEDİR?

Vincler, kapalı veya açık alanda, insan gücünün yeterli gelmediği durumlarda, ağır ve gabarili bir malzemeyi bulunduğu noktadan diğer bir noktaya, bir üretim prosesi içinde sürekli veya aralıklı çalışmaya dikey ve yatay hareketlerle taşıma işlemi yapmamızı olanak sağlayan makineleridir.

Taşima işleminin temel amacı; üretim prosesi içindeki malzeme akış zamanını asgari değerlere indirerek üretim zamanını ve maliyetini azaltmak ve üretim güvenliğini sağlamaktır.

Elektrikli vinc seçiminde sistemin kullanım süresince istenen performansta görevini yerine getirmesi dikkate alınması gereken en önemli özelliktir. Bu amac doğrultusunda seçimi yapılacak olan vinc ve parçalarının F.E.M (Federation Europenne de la Manutention) standardına göre belirlenen çalışma grubu ve süresi belirlenmelidir.
VİNC SEÇİMİ NASIL YAPILIR?

Vincilerin doğru seçilmesi, işlerin yüksek performanslı biçimde yapılmasını ve yatırım maliyetinin düşmesini sağlamakla kalmaz, aynı zamanda kazaların da önlenmesini sağlar. Her çalışma alanının kendine özgü koşulları vardır. Bu koşulları dikkate alamak, sağlıklı seçim yapmanın önündeki en büyük engeldir.

Öncelikle çalışma koşullarına göre vinc tipinin belirlenmesi gerekmektedir. Vincin yapacağı işler ve hangi alanlarda kullanılacağı önemli bir konudur. Sadece çalışacağı alanın fiziksel ebatları değil çalışacağı ortam şartları (sıcaklık, rutubet, toz, asit buharı, patlayıcı gaz vb.) da dikkate alınmalıdır.

İkinci önemli konu ise kaldıracak yük, yükün taşımı şartlarına, çalışma süre ve siklığına göre doğru kapasitenin ve çalışma sınıfının seçilmesidir. Vincin teknik özellikleri ve hızı ihtiyacı tam olarak karşılamalıdır. Bu kriterlere göre yapılmayan seçimler yanlış bir vinc sisteminin kurulumuna neden olacak ve ekstra maliyetlere ve iş kazalarına yol açabileceği tespit edilmiştir.

Vinc seçim genel olarak iki ana bağıyla göre yapılabilir. Bunlar vinc çalışma ortamı ve vincin çalışma şartlarından. Bu hususları detaylı incelemek gerekirse;
1/ Vinç Çalışma Ortamı

a // Ortam Sıcaklığı

b // Açık veya Kapalı Saha

c // Çalışma Sahası

Vinç kullanıldığı tesiseteki ortam şartlarını da vinci direkt olarak etkiler. Örneğin galvanizleme işlemi yapılan tesislerde yoğun asit buharının bulunması çelik malzeme direncinin kolay kırlamasına neden olur. Önlem olarak özel astar ve boyalar kullanılmadır. Veya üretimi yapılan mamul nedeniyle yoğun olarak yanıcı parlayıcı gaz barındıran ortamlarda kiviclıma neden olacak komponentlerin özel kaplamalı seçilmiş ve ex-proof (anti-parlayıcı) materiyallerin tercih edilmesi bu önlemlere birer örnek olur.

d // Yük Türü ve Haraket Şekli

Yükün türü vinç belirlenmesinde önemli faktörlerden biridir. Sektörün genel talebi kanca ile kaldırmaya yapan sistemler olmakla beraber kullanım türüne ve yükün çeşidine göre kaldırmaya ekipmanı değişebiliridir. Önegin hurda vinçleri, özel magnet aparatlar, seri istifelmeye vinçleri gibi değişik iş profilleri vinç seçiminde önem arz etmektedir.

2 /Çalışma Şartları

Vinc Çalışma Şartlarının Tespiti

Kullanıcının ihtiyaçına göre belirlenecek olan çalışma şartlarının en önemli bileşeni çalışma sınıfının tespitidir. Çalışma sınıfı, kaldırma makinelerinin imalatında ana belirleyicidir. Vinc sisteminin kullanım esnasında kapasitesinin ne kadarını kullanıldığı çalışma sınıfını belirler. Bu ifadeyi açıklama ve yaklaşık bir formül ile belirlemek gerekirse;

Vincin işletme şartlarına göre seçiminin yapılabilmesi için ilk önce vincin işletme sınıfı belirlenmelidir. Bunun için aşağıdaki değerler belirlenir.

- Kaldırılacak maksimum ağırlık (kg)
- Kaldırma hızı (m/d)
- Kancanın hareket mesafesi (yolu) (m)
- Saatte çalışma sayısı
- Günlük çalışma süresi (saat)

Buna göre,

\[
	ext{Çalışma süresi (t)} = \frac{2 \times \text{Kanca hareket mesafesi} \times \text{Çalışma sayısı} \times \text{Çalışma süresi}}{60 \times \text{Kaldırma hızı}} \quad \text{[saat]}
\]

olarak hesaplanır.

İşletme esnasında gerçekleşecek yükleme tipi belirlenerek çalışma süresi, nominal kapasite ve halat donanımına göre vincin işletme sınıfı ve tipi bulunabilir.

Çalışma sınıfı seçim tablosu – FEM

Yükleme tipi hafif, orta, ağır ve çok ağır olmak üzere 4 gruba ayrılır. Çok seyrek nominal yük kaldırılması halı hafif yükleme grubunu, devamlı nominal yükün kaldırılması ise çok ağır yükleme grubunu göstermektedir.

İşletme esnasında kullandığımız yük tipini ve çalışma süresini (t) belirledikten sonra F.E.M’in (Federation Europeenen de la Manutention) (Avrupa Kaldırma Ekipmanları Federasyonu) oluşturduğu ve pratikte de kullanılan tablodan çalışma sınıfını belirtenir.

Çalışma sınıfının tespiti ile kaldırma makinesinin genel karakteristiğini belirlenmiş olur. Bu karakteristiğe bağlı olarak en sağlıklı şekilde oluşturulacak vinc sisteminin komponentleri ve teknik özellikleri belirlenebilir.
<table>
<thead>
<tr>
<th>Yükleme Sınıfı</th>
<th>Günlik Ortalama Çalışma Süresi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 2</td>
</tr>
<tr>
<td>1 Hafif</td>
<td>1</td>
</tr>
<tr>
<td>2 Orta</td>
<td>< 0.5</td>
</tr>
<tr>
<td>3 Ağır</td>
<td>< 0.25</td>
</tr>
<tr>
<td>4 Çok Ağır</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mekanizma Grubu</th>
<th>FEM 9511/86</th>
<th>1 Bm</th>
<th>1 Am</th>
<th>2m</th>
<th>3m</th>
<th>4m</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 4301/88</td>
<td>M3</td>
<td>M4</td>
<td>M5</td>
<td>M6</td>
<td>M7</td>
<td></td>
</tr>
<tr>
<td>Fasılalı Çalışma Oranı (%)</td>
<td>FEM 9 683/95</td>
<td>25</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Saatteki Kalkış Sayısı (h⁻¹)</td>
<td>FEM 9 683/95</td>
<td>150</td>
<td>40</td>
<td>240</td>
<td>300</td>
<td>360</td>
</tr>
</tbody>
</table>

Örnek Hesap:

Kaldırma kapasitesi
Yükleme sınıfı (çalışma koşullarına göre)
Kanca hareket mesafesi
Saatteki çalışma sayısı
Günlik çalışma sayısı
Kaldırma hızı

: Q = 5000 kg
: 1 Hafif
: H = 10 m
: n = 7
: T = 8 saat
: Vh = 10 m/dak

Günlik ortalama çalışma süresi "t" tahmini değildir ve aşağıdaki gibi hesaplanır. Bu değer, kaldırma ünitesinin F.E.M grubunun belirlenmesini sağlar. Vh = 10 m/dak

Çalışma süresi (t) = \[
\frac{2 \times \text{Kanca hareket mesafesi} \times \text{Çalışma sayısı} \times \text{Çalışma süresi}}{60 \times \text{Kaldırma hızı}}
\] [saat]

\[
t = \frac{2 \times H \times n \times T}{60 \times Vh} = \frac{2 \times 10 \times 7 \times 8}{60 \times 10} = 1.87 \text{ saat}
\]

Tablodan, HAFIF yükleme sınıfında ve günlik çalışma süresinin ortalaması t = 1.87 saat olan bir kaldırma ünitesi için F.E.M 18m mekanizma grubu bulunur.
Fem-ISO STANDARTLARINA GÖRE VİNC SİNİFLANDIRILMESİ

<table>
<thead>
<tr>
<th>Kadırmış Sınıfı</th>
<th>İşletme şekli</th>
<th>Kadırmış sınıfı</th>
<th>Yüklemeye Grubu</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>El ile tahlık edilen vincerler</td>
<td>H1</td>
<td>B6, H1, H2</td>
</tr>
<tr>
<td>2</td>
<td>Montaj vincerleri</td>
<td>H1, H2</td>
<td>81, 82</td>
</tr>
<tr>
<td>3</td>
<td>Santralde makine binisalı vincerler</td>
<td>H1</td>
<td>82, 83</td>
</tr>
<tr>
<td>4</td>
<td>Depo krenler, Traversal krenler, Hudra deposu vincerleri</td>
<td>Aralık işletme</td>
<td>H2, B4</td>
</tr>
<tr>
<td>5</td>
<td>Devrilık işletme</td>
<td>H3, H4</td>
<td>85, 86</td>
</tr>
<tr>
<td>6</td>
<td>Atilye vincerleri</td>
<td>H3, H4</td>
<td>85, 86</td>
</tr>
<tr>
<td>7</td>
<td>Kup聆de krenler, hemen hemen depo vincerleri</td>
<td>Keppel, magnetli</td>
<td>H3, H4</td>
</tr>
<tr>
<td>8</td>
<td>Dokum ve doküman hine vincerleri</td>
<td>H3, H4</td>
<td>85, 86</td>
</tr>
<tr>
<td>9</td>
<td>Ocak vincerleri</td>
<td>H3, H4</td>
<td>85, 86</td>
</tr>
<tr>
<td>10</td>
<td>Dokum ve çekilacak vincerleri</td>
<td>H4</td>
<td>86, B6</td>
</tr>
<tr>
<td>11</td>
<td>Döküm ve döküm işlemiinde kullanılan vincerleri</td>
<td>H4</td>
<td>85, 86</td>
</tr>
<tr>
<td>12</td>
<td>Liman, portallı, portallar arası ve ya dönerek vincerleri</td>
<td>Kanal işletme</td>
<td>H2, B4</td>
</tr>
<tr>
<td>13</td>
<td>Keppel işletme</td>
<td>H3, H4</td>
<td>85, 86</td>
</tr>
<tr>
<td>14</td>
<td>Hareketli ve ya sabit band vincerleri</td>
<td>H1</td>
<td>83, 84</td>
</tr>
<tr>
<td>15</td>
<td>Döküm vincerleri</td>
<td>H1</td>
<td>83, 84</td>
</tr>
<tr>
<td>16</td>
<td>Liman, döner, yüzey vincerleri</td>
<td>H2</td>
<td>84, 85</td>
</tr>
<tr>
<td>17</td>
<td>Keppel, Magnetli</td>
<td>H3, H4</td>
<td>85, 86</td>
</tr>
<tr>
<td>18</td>
<td>Ağır yük ve yüzey vincerleri</td>
<td>H2</td>
<td>85, 86</td>
</tr>
<tr>
<td>19</td>
<td>Gemi vincerleri</td>
<td>H2</td>
<td>83, 84</td>
</tr>
<tr>
<td>20</td>
<td>Keppel, Magnetli</td>
<td>H3, H4</td>
<td>84, 85</td>
</tr>
<tr>
<td>21</td>
<td>İnşaat kule vincerleri</td>
<td>H1</td>
<td>83, 84</td>
</tr>
<tr>
<td>22</td>
<td>Montaj ve döme vincerleri</td>
<td>H1</td>
<td>83, 84</td>
</tr>
<tr>
<td>23</td>
<td>Kayık dönerek vincerleri</td>
<td>H2</td>
<td>83, 84</td>
</tr>
<tr>
<td>24</td>
<td>Keppel, Magnetli</td>
<td>H3, H4</td>
<td>84, 85</td>
</tr>
<tr>
<td>25</td>
<td>Emniyetli vincerleri</td>
<td>H2</td>
<td>84, 85</td>
</tr>
<tr>
<td>26</td>
<td>Mobilya ve oto vincerleri</td>
<td>H2</td>
<td>84, 85</td>
</tr>
<tr>
<td>27</td>
<td>Keppel, Magnetli</td>
<td>H3, H4</td>
<td>84, 85</td>
</tr>
<tr>
<td>28</td>
<td>Ağır yük mobilya ve oto vincerleri</td>
<td>H1</td>
<td>81, 82</td>
</tr>
</tbody>
</table>

Yüklemeye Durumu ve Saptanması

<table>
<thead>
<tr>
<th>Yüklemeye Sayısı Sınıfı</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
<th>N4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreinin en az değeri oerline yeineleme sayısı N<sub>o</sub></td>
<td>2.10<sup>4</sup>N<sub>o</sub></td>
<td>6.10<sup>4</sup>N<sub>o</sub></td>
<td>2.10<sup>5</sup>N<sub>o</sub></td>
<td>6.10<sup>5</sup>N<sub>o</sub></td>
</tr>
<tr>
<td>Gerilme durumu</td>
<td>Kren ve ya elamanların yüklemeye durumu</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sınır</th>
<th>Tanımı</th>
<th>Tabelama</th>
</tr>
</thead>
<tbody>
<tr>
<td>S<sub>0</sub></td>
<td>Uzun çalışma molası veren, kalındığına çok küçük yüklerde çalışan ender olarak maksimum yükde çalışan krenler.</td>
<td>Omurin; Santral ve ya türbin dairesi krenleri vb.</td>
</tr>
<tr>
<td>S<sub>1</sub></td>
<td>Kısa molalarla çalışan fakat ortalaması kapasitzenin yari maksimum yükün %1/3 civarında yük taşıyan çok ender olarak maksimum yükde çalışan krenler.</td>
<td>Omurin; Depo, atolye, hudra deposu krenleri, ilman ve doküman hane krenleri vb.</td>
</tr>
<tr>
<td>S<sub>2</sub></td>
<td>Ulduca sık çalışan ve kapasitzenin yari maksimum yükün %1/3 ile %2/3 civarında yük taşıyan ve maksimum yükde oldukça sık sık çalışan krenler,</td>
<td>Omurin; Depo, atolye, hudra deposu krenleri, ilman ve doküman hane krenleri vb.</td>
</tr>
<tr>
<td>S<sub>3</sub></td>
<td>Devamî maksimum ve ya maksimum yükde yakın yükde çalışan krenler,</td>
<td>Omurin; Keppel, potały ve ya magnetli hudra deposu krenleri ve doküman hane krenleri vb.</td>
</tr>
</tbody>
</table>